
Based on the results of the experiments performed we may conclude that for the indi- 
cated values of the criteria KTg* and KGg the nonsteady state does not affect heat libera- 
tion [5], which permits us to treat the parameter change modes as quasisteady states. 

The results obtained confirm the reliability and effectiveness of the method for de- 
termining heat liberation coefficients considered herein. 

NOTATION 

T, temperature; Tw, temperature of heat-sensing surface; Tf, heat exchange agent tem- 
perature; k, thermal conductivity coefficient; c, specific heat; p, density; x, spatial 
coordinate; R, RI, RE, current, internal, and external radii of sensor; L, sensor length; 
AR, distance between approximation points along thermal sensor thickness; AL, distance be- 
tween approximation points along thermal sensor length; V, volume of sensor element; F, 
area; a, heat liberation coefficient; T, time; AT, step in the time; n, i, k, element num- 
bers; j, time step number; k0, bk, co, b c, coefficients of approximating linear temperature 
dependences of thermal conductivity coefficient and sensor material specific heat; qw, thermal 
flux density on heat sensing wall; ~, dynamic viscosity; G, heat exchange agent flow rate; 
Cp, specific heat of heat exchange agent; d, channel diameter. 
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DETERMINATION OF THERMAL FLUX DENSITY, MEDIUM TEMPERATURE 

AND HEAT LIBERATION COEFFICIENT BY SOLUTION OF THE CONVERSE 

THERMAL CONDUCTIVITY PROBLEM 

M. P. Kuz'min UDC 621.1.001.57:536.24 

The converse thermal conductivity problem of determining temperature of the 
hot medium, heat liberation coefficient, and thermal flux density for asym- 
metic heating is solved using results of wall temperature measurements at 
three points located different distances from the hot surface. 

In operation of high power equipment experimental determination of the temperature of 
the hot medium, the thermal flux density, and the heat liberation coefficient from the me- 
dium to the body wall under nonsteady state conditions is difficult, since thermal sensors 
will not tolerate the high thermal loads involved. In connection with this one can solve 
the converse problem of determining the basic parameters of the nonsteady state heat ex- 
change between the hot medium and the body wall by using measurements of temperature over 
time at three points located at different distances from the heated (hot) wall surface. 

We will consider the one-dimensional process of heat transport within a wall, one 
surface of which is heated by the hot medium, while the other is cooled by a cold medium 
in accordance with boundary conditions of the third type. 
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The solution can be carried out by mathematical modeling with a specialized computer 
using resistance, capacitance networks. In performing the modeling all thermal parameters 
are considered known, with the exception of the temperature of the hot medium, the thermal 
flux density, the heat liberation coefficient, and their electrical analogs -- the boundary 
voltage, resistance, and current of the model. The adjustable parameters of the model are 
calculated using thermal and construction data of the physical process, since these are re- 
lated by the mathematical electrical circuit analogy [I]. 

Solution of the converse thermal conductivity problem with the specialized computer 
is performed by successive approximations. Initially the gas temperature is determined, 
then the heat liberation coefficient, and finally, the thermal flux density. This sequence 
is necessary because the medium temperature and the heat liberation coefficient affect 
the wall temperature regime differently. 

Uniqueness of the solution is insured by specifying a temperature profile in the wall 
(temperature isochrons) in the form of a parabola of order n - an arbitrary real number. 

Having established the arbitrary value of the model boundary resistance for the case 
of boundary conditions of the third sort or eliminating it for conditions of the first 
sort, by varying the voltage feeding the model the process of heat transport is modeled 
and agreement between the voltage of the corresponding model point and the experimental 
relative temperature of the (first) point closest to the heated surface is achieved to 
within the limits of a specified discrepancy. 

Taking the voltage thus obtained as a first approximation and varying the boundary 
resistance, we again model the heat transport process and achieve agreement of the rela- 
tive voltage at the corresponding model point to the experimental relative temperature of 
the third point towithin a specified discrepancy. In doing this the previously obtained match 
of voltages and temperatures is maintained by minimizing the discrepancy. 

Then establishing the voltage and boundary condition obtained in the first approxima- 
tion in the model and varying them, we achieve agreement of the voltage at the correspond- 
ing model point and the experimental temperature of the middle (second) point to within the 
specified discrepancy. 

After successively matching electrical modeling results to the experimental data for 
all three points within the limits of specified discrepancies the modeling process is halt- 
ed and the values of the supply voltage and boundary resistance and voltage are taken from 
the model. These values are taken as the final ones used to find the temperature of the 
hot medium and the heated wall surface as well as the heat liberation coefficient. The 
thermal flux density is then determined from the results obtained using Newton's formulas. 

By carrying out the electrical modeling with the specialized computer at several points 
in time we can determine the change with time of hot medium and heated wall temperature, heat 
liberation coefficient, and thermal flux density. 

To verify the reliability of the method theproblem of determining gas temperature, 
heat liberation coefficient, and thermal flux density was solved for heat transport through 
a planar wall, using the data of [I, p. 143]. 

Commencing from the condition of location of the experimental data at node points of 
the electrical model, we choose the number of cells in the model and define the coordinate 
scale ks Location of the experimental points at node points of the electrical model is 
insured by varying the number of model cells. Correspondence (coincidence) of the thermo- 
sensor location points and the node points of the electrical model decreases the uncertainty 
in result processing. 

The electrical process time is chosen proportional to the thermal process time in ac- 
cordance with available measuring equipment and the time scale k~ is defined. 

Knowing the thermophysical characteristics of the wall material, the heat liberation 
coefficient on the cooled surface ~c, the coordinate and time scales from the model equa- 
tions we determine the ohmic resistance of the electrical cells r and the model resistance 
on the cooled boundary Rc: 

r ~ ~ ;  R c  . . . . .  
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After all modules of the specialized computer are combined the values obtained for r and 
R c are established in the electrical model. 

To solve the converse thermal conductivity problem the temperature scale k T is speci- 
fied and experimental values (levels) of temperatures at three points for the moment being 
studied are established on the screen of the oscilloscope. After matching these tempera- 
tures to the electrical model, values of the supply and boundary voltages u b and u s are mea- 
sured together with the boundary resistance R h. 

Temperatures of the gas Tg and the hot surface T s and the heat liberation coefficient 
are calculated with the functions Tg = kTub, T s = kTUs, ~h = ac(Rc/Rh). The data thus ob- 
tained permit calculating the thermal flux density from the relationship q = ah(Tg -- Ts). 

Results of solving the converse thermal conductivity problem with the specialized 
computer were compared to data from an analytical calculation. Temperature divergences of 
3-5% were found with thermal flux divergences of 7-12%. 

The method described permits determination of hot medium temperature, heat liberation 
coefficient, and thermal flux density from wall temperature measurements obtained by simple 
means in regions where their values are relatively low. 

NOTATION 

~, thermal diffusivity coefficient; Ce, capacitance of electrical model cell; k%, kT, 
k~, coordinate, temperature, and time scales; q, thermal flux density; r, ohmic resistance 
of electrical model cell; Rh, Rc, resistance of heated and cooled boundaries of electrical 
model; T~, T s, temperature of hot gas and body surface; u s , Ub, supply and boundary (sur- 
face) voltages of electrical model; =h, ~c, heat liberation coefficients on hot and cold 
wall surfaces; %, thermal conductivity coefficient; ~, time. 
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SELECTION OF THERMOSENSOR INERTIA IN SOLVING THE CONVERSE 

THERMAL CONDUCTIVITY PROBLEM 

I. M. Lagun UDC 536.24 

An expression is presented for calculation of the inertia of the thermosensor 
whose indications are used to solve the converse problem of determining a rap- 
idly changing heat liberation coefficient. 

To solve the converse thermal conductivity problem of determining a rapidly changing 
heat liberation coefficient between the hot gas and a solid wall by temperature measure- 
ments within the wall it is necessary to choose the thermosensor position and inertia prop- 
erly. 

As the thermosensor is removed from the hot wall surface and as its inertial character- 
istics are degraded the temperature curve which it produces "smoothes out," and information 
on the character of the change in the heat liberation coefficient is lost, although the 
mean value ~g can be reconstructed from such data quite simply. 

In order to choose the thermosensor inertial characteristics the problem was posed 
of determining the time over which the temperature at the given coordinate reaches a given 
fraction Y of the surface temperature (sensor threshold sensitivity). 
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